Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med ; 3(11): 733-734, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36370693

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily affecting motor neurons. Recently,1 Miller et al. presented phase 3 data for the RNase-H-recruiting antisense oligonucleotide (ASO) targeting superoxide dismutase 1 (SOD1) in ALS, which represents a step forward in the deployment of ASO therapeutics against CNS targets.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/genética , Ribonuclease H , Superóxido Dismutase-1/genética , Superóxido Dismutase , Oligonucleotídeos Antissenso/uso terapêutico
2.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
3.
Nat Med ; 28(1): 117-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949835

RESUMO

Expansions of a G4C2 repeat in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating adult-onset neurodegenerative disorders. Using C9-ALS/FTD patient-derived cells and C9ORF72 BAC transgenic mice, we generated and optimized antisense oligonucleotides (ASOs) that selectively blunt expression of G4C2 repeat-containing transcripts and effectively suppress tissue levels of poly(GP) dipeptides. ASOs with reduced phosphorothioate content showed improved tolerability without sacrificing efficacy. In a single patient harboring mutant C9ORF72 with the G4C2 repeat expansion, repeated dosing by intrathecal delivery of the optimal ASO was well tolerated, leading to significant reductions in levels of cerebrospinal fluid poly(GP). This report provides insight into the effect of nucleic acid chemistry on toxicity and, to our knowledge, for the first time demonstrates the feasibility of clinical suppression of the C9ORF72 gene. Additional clinical trials will be required to demonstrate safety and efficacy of this therapy in patients with C9ORF72 gene mutations.


Assuntos
Proteína C9orf72/genética , Mutação , Oligonucleotídeos Antissenso/genética , Animais , Proteína C9orf72/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
4.
Macromol Biosci ; 21(5): e2100002, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760365

RESUMO

Aptamers offer excellent potential for replacing antibodies for molecular recognition purposes however their performance can compromise with biological/environmental degradation being a particular problem. Molecularly imprinted Polymers (MIPs) offer an alternative to biological materials and while these offer the robustness and ability to work in extreme environmental conditions, they often lack the same recognition performance. By slightly adapting the chemical structure of a DNA aptamer it is incorporated for use as the recognition part of a MIP, thus creating an aptamer-MIP hybrid or aptaMIP. Here these are developed for the detection of the target protein trypsin. The aptaMIP nanoparticles offer superior binding affinity over conventional MIP nanoparticles (nanoMIPs), with KD values of 6.8 × 10-9 (±0.2 × 10-9 ) m and 12.3 × 10-9 (±0.4 × 10-9 ) m for the aptaMIP and nanoMIP, respectively. The aptaMIP also outperforms the aptamer only (10.3 × 10-9 m). Good selectivity against other protein targets is observed. Using surface plasmon resonance, the limit of detection for aptaMIP nanoparticles is twofold lower (2 nm) compared to the nanoMIP (4 nm). Introduction of the aptamer as a "macro-monomer" into the MIP scaffold has beneficial effects and offers potential to improve this class of polymers significantly.


Assuntos
Aptâmeros de Nucleotídeos/química , Modelos Moleculares , Polímeros Molecularmente Impressos/química , Nanopartículas/química , Tripsina/química , Técnicas Biossensoriais , Muramidase/química , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície
5.
Mol Cancer Ther ; 17(6): 1251-1258, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29654062

RESUMO

Glioblastoma (GBM) is the most common and lethal form of primary brain tumor with dismal median and 2-year survivals of 14.5 months and 18%, respectively. The paucity of new therapeutic agents stems from the complex biology of a highly adaptable tumor that uses multiple survival and proliferation mechanisms to circumvent current treatment approaches. Here, we investigated the potency of a new generation of siRNAs to silence gene expression in orthotopic brain tumors generated by transplantation of human glioma stem-like cells in athymic nude mice. We demonstrate that cholesterol-conjugated, nuclease-resistant siRNAs (Chol-hsiRNAs) decrease mRNA and silence luciferase expression by 90% in vitro in GBM neurospheres. Furthermore, Chol-hsiRNAs distribute broadly in brain tumors after a single intratumoral injection, achieving sustained and potent (>45% mRNA and >90% protein) tumor-specific gene silencing. This readily available platform is sequence-independent and can be adapted to target one or more candidate GBM driver genes, providing a straightforward means of modulating GBM biology in vivoMol Cancer Ther; 17(6); 1251-8. ©2018 AACR.


Assuntos
Neoplasias Encefálicas/genética , Inativação Gênica , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Ther Nucleic Acids ; 8: 158-168, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918018

RESUMO

Two mechanisms dominate the clinical pipeline for oligonucleotide-based gene silencing, namely, the antisense approach that recruits RNase H to cleave target RNA and the RNAi approach that recruits the RISC complex to cleave target RNA. Multiple chemical designs can be used to elicit each pathway. We compare the silencing of the asthma susceptibility gene ADAM33 in MRC-5 lung fibroblasts using four classes of gene silencing agents, two that use each mechanism: traditional duplex small interfering RNAs (siRNAs), single-stranded small interfering RNAs (ss-siRNAs), locked nucleic acid (LNA) gapmer antisense oligonucleotides (ASOs), and novel hexadecyloxypropyl conjugates of the ASOs. Of these designs, the gapmer ASOs emerged as lead compounds for silencing ADAM33 expression: several gapmer ASOs showed subnanomolar potency when transfected with cationic lipid and low micromolar potency with no toxicity when delivered gymnotically. The preferential susceptibility of ADAM33 mRNA to silencing by RNase H may be related to the high degree of nuclear retention observed for this mRNA. Dynamic light scattering data showed that the hexadecyloxypropyl ASO conjugates self-assemble into clusters. These conjugates showed reduced potency relative to unconjugated ASOs unless the lipophilic tail was conjugated to the ASO using a biocleavable linkage. Finally, based on the lead ASOs from (human) MRC-5 cells, we developed a series of homologous ASOs targeting mouse Adam33 with excellent activity. Our work confirms that ASO-based gene silencing of ADAM33 is a useful tool for asthma research and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...